Mad Max:

Affine Spline Insights into Deep Learning

Richard Baraniuk

Rice UNIVERSITY




Hype Cycle for Emerging Technologies, 2018
i

Deap Neural Nes (Deep [eamng)
Carbon Nanotube

Patesa vl be resached in:
Dee @ lessthen 2 pears
@ itoSyears

@ 5o 10 years

Smart Werkspace
Bram-Compuler nterface
Artonomois Mobile Rubots

Yirtual Assistants

- g -
Smart Fbsts ngf‘;:k Fallees Le a r n l n g A\ more tan 10 years
Desep Newrsd Network ASKCs B
AIFaas
Cuantum Computing

Connecled Home
Auenomons Driving Level 4

Wiimetric Displiys
Sedt- Healing System Technoby
Comsersational Al Platform

Atonomous Driving Level 5
" Mied Rieaiy

Bleckcham for Data Sacurity
Newromarphic Hardware

Human Augmentation

Knewledge Graphs

Artfca| General Inteligance

expectations

fugmented Reality

Smart Dust
Flying Autonomows Vehicks
Einlech — Cultwed or
Adtificial Tessue
Asat July 2018
Peak of

Inflated
Expectations

Trough of Plateau of

Innovation - = -
Hope O ni enmen
Disillusionment P o Productivity

Trigger

time
gartner.com/SmarterWithGartner

Source: Gartner (August 2018)
© 2018 Gartner, Inc. and/or its affiliates. All rights resarvad. ar ner.



 KURZWEIL

tn THE AGE OF SPIRITUAL MACHINES

THE
SINGULARITY

Human Intellect

Trans-
Humans?

Machine
Intelligence

Intellectual Level/Power

0
Time

1950 2000
Singularity Timeline

Rise in human intellect could be driven by integrating with machines in the future







greek questions for the babylonians

e Why is deep learning so effective?
e Can we derive deep learning systems from first principles?
e When and why does deep learning fail?

e How can deep learning systems be improved and extended
in a principled fashion?

e Where is the foundational framework for theory?

See also Mallat, Soatto, Arora, Poggio, Tishby, [growing community] ...
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R. Balestriero & B

“A Spline Theory of Deep Networks,” ICML 2018

“"Mad Max: Affine Spline Insights into Deep Learning,” arxiv.org/abs/1805.06576, 2018
“From Hard to Soft: Understanding Deep Network Nonlinearities...,” ICLR 2019

“A Max-Affine Spline Perspective of RNNs,” ICLR 2019 (w/ J. Wang)




prediction problem

e Unknown function/operator f mapping data to labels

y = f(x)

]

label data (signal, image, video, ...)

e Goal: Learn an approximation to f using training data

y = fo(x) {(x6,¥i) Fies



deep nets approximate

e Deep nets solve a function approx problem (black box)
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deep nets approximate

e Deep nets solve a function approx problem hierarchically
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deep nets and splines

e Deep nets solve a function approx problem hierarchically
using a very special family of splines

convo ReLU max-pool convo RelU
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deep nets and splines

Piecewise convexity of artificial neural networks
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spline approximation

e A spline function approximation consists of
— a partition Q of the independent variable (input space)

- a (simple) local mapping on each region of the partition
(our focus: piecewise-affine mappings)




spline approximation

e A spline function approximation consists of
— a partition Q of the independent variable (input space)
- a (simple) local mapping on each region of the partition

e Powerful splines
- free, unconstrained partition Q (ex: “free-knot” splines)

— jointly optimize both the partition and local mappings
(highly nonlinear, computationally intractable)

o Easy splines
- fixed partition (ex: uniform grid, dyadic grid)
- need only optimize the local mappings



max-affine spline (MAS)

[Magnani & Boyd, 2009; Hannah & Dunson, 2013]

e Consider piecewise-affine approximation of
a convex function over R regions

- Affine functions: a;I:X +b.,, r=1,....R
R _ T
— Convex approximation: Z(X) = IIllaXR a,.X + b,
r=1,...,




max-affine spline (MAS)

[Magnani & Boyd, 2009; Hannah & Dunson, 2013]

o Key: Any set of affine parameters (ar, br), r=1...,R
implicitly determines a spline partition

- Affine functions: a;I:X +b.,, r=1,....R
R _ T
— Convex approximation: Z(X) = IIllaXR a,.X + b,
r=1,...,




scale + bias | ReLU is a MAS

e Scale x by a + bias b | RelLU: Z(:E) = maX(O, axr + b)
— Affine functions: (al, bl) — (O, O), (CLQ, bg) — (CL, b)

T
— Convex approximation: Z(X) — Hlaf% a,.X + b,




max-affine spline operator (MASO)

e MAS for x € R” has affine parameters a, € RD, b, € R

e A MASO is simply a concatenation of K MASs

MAS with
. parameters

: [a]k,’i,ra b?“

x ¢ RP 7z ¢ RE



modern deep nets

Focus: The lion-share of today’s deep net architectures

(convnets, resnets, skip-connection nets, inception nets, recurrent nets, ...)
employ piecewise linear (affine) layers
(fully connected, conv; (leaky) RelLU, abs value; max/mean/channel-pooling)
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convo

theorems

Each deep net layer is a MASO
- convex wrt each output dimension, piecewise-affine operator
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1

u-o'o

]

|-

layer 1

‘ MASO

layer 2
MASO

convo Re

LU

L r
]
1

-
)
1

layer 3

MASO ‘

-

-

AN

Yy
cat (0.04)

boat (0.94)
bird (0.02)



theorems

e Each deep net layer is a MASO
— convex, piecewise-affine operator

convo ReLU max-pool convo RelLU

1 AN

— Yy

1 1 - dog (0.01)
——} cat (0.04)
; boat (0.94)
N R B 1 N O % bird (0.02)
r - - - — r“: -
]

-

1l ---D :--i-t --"-‘I-_--—D
layer 1 layer 2 layer 3
WLOG

‘ MASO MASO MASO ‘ _
ignore
Affine Spline Operator output
softmax

e A deep netis a composition of MASOs
— non-convex piecewise-affine spline operator



theorems

e A deep netis a composition of MASOs
— non-convex piecewise-affine spline operator
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1 1 P
1 1 - dog(0.01)
prp——— cat (0.04)
T boat (0.94)
r _ — 0 = ogird (0.02)
— - o - —— - - 1 "
:::D :-—iu ---'I&-D =--L
layer 1 layer 2 layer 3
‘ MASO MASO MASO ‘
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o A deep net is a convex MASO iff the convolution/fully connected weights in
all but the first layer are nonnegative and the intermediate nonlinearities are nondecreasing



MASO spline partition

e The parameters of each deep net layer (MASO) induce a
partition of its input space with convex regions

— vector quantization (info theory)
— k-means (statistics)
— Voronoi tiling (geometry)



MASO spline partition

e The L layer-partitions of an L-layer deep net combine to form
the global input signal space partition

— affine spline operator
— non-convex regions

e Toy example: 3-layer “"deep net”
- Input x: 2-D (4 classes)

Fully connected | RelLU (45-D output)

Fully connected | RelLU (3-D output)

Fully connected | (softmax) (4-D output)

Outputy: 4-D




MASO spline partition

The L layer-partitions of an L-layer deep net combine to form
the global input signal space partition

— affine spline operator
— non-convex regions

z|2]

Toy example: 3-layer “deep net”
- Inputx: 2-D (4 classes) ——]
- Fully connected | RelLU (45-D output)
- Fully connected | RelLU (3-D output)
— Fully connected | (softmax) (4-D output)
- Output y: 4-D




MASO spline partition

e Toy example: 3-layer “deep net”
- Input x: 2-D (4 classes)
- Fully connected | RelLU (45-D output)
- Fully connected | RelLU (3-D output)
- Fully connected | (softmax) (4-D output)
- Outputy: 4-D

e VQ partition of layer 1 —
depicted in the input space

- convex regions




MASO spline partition

Toy example: 3-layer “deep net”
- Input x: 2-D (4 classes)
- Fully connected | RelLU (45-D output)
- Fully connected | RelLU (3-D output)
- Fully connected | (softmax) (4-D output)
- Outputy: 4-D

Given the partition region Q(x)
containing X the layer
input/output mapping is affine

z(X) = AgX + box)




MASO spline partition

Toy example: 3-layer “deep net”
- Input x: 2-D (4 classes)
- Fully connected | RelLU (45-D output)
- Fully connected | RelLU (3-D output)
- Fully connected | (softmax) (4-D output)
- Outputy: 4-D

VQ partition of layer 2
depicted in the input space

- non-convex regions due to
visualization in the input space




MASO spline partition

Toy example: 3-layer “deep net”
- Input x: 2-D (4 classes)
- Fully connected | RelLU (45-D output)
- Fully connected | RelLU (3-D output)
- Fully connected | (softmax) (4-D output)
- Outputy: 4-D

Given the partition region Q(x)
containing X the layer
input/output mapping is affine

z(X) = AgX + box)




MASO spline partition

e Toy example: "Deep” net layer
- Input x: 2-D (4 classes)
- Fully connected | RelLU (45-D output)
- Fully connected | RelLU (3-D output)
- Fully connected | (softmax) (4-D output)
- Outputy: 4-D

e VQ partition of layers 1 & 2 —p
depicted in the input space

- non-convex regions




learning

layers 1 & 2

learning epochs (time)



local affine mapping — CNN

Example: Classical CNN architecture with conv/RelLU/max-pooling layers terminating
In a linear classifier comprising one fully connected layer and softmax

fully

convo RelU max-pool convo RelU connected softmax
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Result Input (x) to output (zgng(x)) mapping is a region-dependent affine
transform
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local affine mapping — CNN

Fixed, different
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matched filters
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deep nets are matched filterbanks

fully
convo RelU max-pool convo RelU connected softmax

= L o odom 2
L'""in D:%% Y

X
(L) (x) = AooX + b z(D) (x)
l e Row cof Agx) is a vectorized

signal/image corresponding to class ¢

e Entry c of deep net output =
l. inner product between row ¢ and signal

e For classification, select largest output;
matched filter!



deep nets are matched filterbanks

Result  Row ¢ of Ag(y) is a matched filter for class ¢ that is applied to x;
largest inner product wins

Visualization for CIFAR10: Row of Apet[x], inner product with x

Input x plane, 11.7 ship, 1.1

(Converted to black & white for ease of visualization)

Matched filter can be interpreted as being applied hierarchically thru the layers

Link with saliency maps [Simonyan et al., 2013; Zeiler & Fergus, 2014]



data memorization

Result Matched filters of an infinite capacity deep net memorize the training data

+4/CR2 x, c=y, (correct class)

{(xn-yn)}ﬁzvzl

row ¢ of AQ(x,,) =

Experiment with MNIST, CIFAR10 10000
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training image x, and rows of Ape;[x;]
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orthogonal deep nets

Matched filter classifier is optimal only for signal + white Gaussian noise (idealized)

For more general noise/nuisance models, useful to orthogonalize the matched filters
[Eldar and Oppenheim, 2001]

Result Easy to do with any deep net thanks to the affine transformation formula;
simply add to the cost function a penalty on the off-diagonal entries of WL (W)

conventional
> O e e e e e
850 - deep net w/
- \, orthogonal
g 40 ! matched
jﬁ filters
— 30 ! . \\\
0 25 50 75 100 125 150 175 200 © NV
Classification on CIFAR100 Training epochs 2>

Bonus: Reduced overfitting

18




partition-based signal distance

Capture the geometry of the data space by measuring
the distance between the partition regions
inhabited by two signals x; and x»

Use Hamming distance between the codewords

Q(x1) and Q(x2)

Easily computed in terms of activation patterns of
RelLU/max-pooling layers

Links with distance between vector quantization
encodings




partition-based signal distance

15 nearest neighbors of a test image (upper left) using spline partition (VQ) distance

RelU 2 Max-Pool 2

Global VQ




partition-based signal distance

15 nearest neighbors of a test image (upper left) using spline partition (VQ) distance

Rell 1 Max-Pool 2

(a) Training with correct labels

Max-Pool 2

(b) Training with random labels

RelU 2 Max-Pool 2

(¢) No Training 20



additional directions

Study the geometry of deep nets and signals via VQ partition

Affine input/output formula enables explicit calculation of the
Lipschitz constant of a deep net for the analysis of stability,
adversarial examples, ...

Theory covers many recurrent neural networks (RNNSs)



additional directions

e Theory extends to non-piecewise-affine operators (ex: sigmoid)
by replacing the “hard VQ” of a MASO with a “soft VQ”

- soft-VQ can generate new nonlinearities (ex: swish)

RelLU Absolute value arbitrary max-affine spline




summary

A wide range of deep nets solve function approximation problems using
a composition of max-affine spline operators (MASOs)

- links to vector quantization, k-means, Voronoi tiling

Input/output deep net mapping is a VQ-dependent affine transform

— enables explicit calculation of the Lipschitz constant of a deep net for the
analysis of stability, adversarial examples, . . .

Deep nets are (learned) matched filterbanks
- new insights into dataset memorization

Theory is constructive
— inspires orthogonalized deep nets
- new geometric distance via Hamming-VQ distance
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